Search results for "molecular devices"

showing 6 items of 6 documents

Self-Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports

2016

A new hybrid material based on sulforhodamine-B dye-loaded silica mesoporous nanoparticles capped with a self-immolative gate has been synthesized and characterized. The gated material's controlled release behavior is monitored under different pH conditions. Under acidic and neutral conditions, a low level of dye release is detected. However, at slightly basic pH, significant dye release occurs owing to deprotonation of the phenol moiety in the capping molecule, which results in its disassembly.

Inorganic chemistryNanoparticlemesoporous materials010402 general chemistry01 natural sciencesCatalysisDeprotonationmolecular devicesQUIMICA ORGANICAPolymer chemistryQUIMICA ANALITICAMoietyMolecule010405 organic chemistryChemistryOrganic ChemistryQUIMICA INORGANICApH-responsive systemsGeneral ChemistryControlled release0104 chemical sciencesMesoporous organosilicasilicadyes/pigmentsHybrid materialMesoporous material
researchProduct

From magnetic to nonlinear optical switches in spin-crossover complexes

2013

ISI Document Delivery No.: 109TF Times Cited: 0 Cited Reference Count: 173 Lacroix, Pascal G. Malfant, Isabelle Real, Jose-Antonio Rodriguez, Vincent Wiley-v c h verlag gmbh Weinheim Si; Various attempts to combine magnetic and nonlinear optical (NLO) properties in a molecule are reviewed, with a special focus on the possibility of interplay between the magnetic component and the quadratic (proportional to E-2) NLO response. This multidisciplinary research leads to the idea of spin-crossover-induced (SCO-induced) NLO switching and is evaluated at the synthetic level, with insights provided by computational chemistry. The need for nontraditional experimental setups to record NLO properties i…

Computational chemistryNonlinear opticsroom-temperaturetransition-metal-complexesSolid-stateNanotechnology02 engineering and technology010402 general chemistry01 natural scienceselectrical-conductivityInorganic ChemistryNonlinear opticalQuadratic equationSpin crossoverbinuclear iron(iii) complexesMagnetic componentsMoleculenlo propertiesNuclear Experimentliquid-crystalCondensed matter physicsChemistryNonlinear optics021001 nanoscience & nanotechnologySpin crossoverMaterials science0104 chemical sciences2nd-harmonic generationHigh Energy Physics::Experimentschiff-base ligandsray crystal-structure0210 nano-technologyFocus (optics)hyper-rayleigh scatteringMolecular devices
researchProduct

Dynamic DNA Origami Devices

2018

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled…

Mechanical movementnanotechnologyDNA nanotechnologyDNA origamiRoboticsSelf-assemblyMolecular devices
researchProduct

Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems

2018

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled…

Computer sciencemechanical movementnanotekniikka02 engineering and technologyReview01 natural sciencesrobotiikkalcsh:Chemistrychemistry.chemical_compoundDNA origamiNanotechnologyDNA nanotechnologylcsh:QH301-705.5SpectroscopyroboticsPhysicsGeneral Medicineself-assembly021001 nanoscience & nanotechnologyMechanical engineeringComputer Science ApplicationsChemistryNanorobotics0210 nano-technologyBiotechnologyeducationNanotechnology010402 general chemistryMedical sciencesCatalysisDNA sequencingInorganic ChemistryDisplacement reactionsmolecular devicesDNA nanotechnologyAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyBase SequenceOrganic ChemistryResponsive systemsDNA0104 chemical sciencesNanostructureslcsh:Biology (General)lcsh:QD1-999chemistryTargeted drug deliveryNucleic Acid ConformationDNA origamiDNAInternational Journal of Molecular Sciences
researchProduct

Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal–Organic Frameworks

2018

Conductive metal-organic frameworks are opening new perspectives for the use of these porous materials for applications traditionally limited to more classical inorganic materials, such as their integration into electronic devices. This has enabled the development of chemiresistive sensors capable of transducing the presence of specific guests into an electrical response with good selectivity and sensitivity. By combining experimental data with computational modelling, a possible origin for the underlying mechanism of this phenomenon in ultrathin films (ca. 30 nm) of Cu-CAT-1 is described. ispartof: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION vol:57 issue:46 pages:15086-15090 ispartof: location…

Materials scienceChemistry MultidisciplinaryQuímica organometàl·licaNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemiresistive sensingmolecular devicesELECTRICAL-CONDUCTIVITYultrathin filmsElectronicsmetal-organic frameworksElectrical conductorScience & Technologyelectrical conductivity010405 organic chemistryGeneral ChemistryConductivitat elèctricaGeneral Medicine021001 nanoscience & nanotechnology0104 chemical sciencesChemistryPhysical SciencesMetal-organic frameworkInorganic materials0210 nano-technologyPorous mediumAngewandte Chemie
researchProduct

A photoactivated molecular gate.

2012

Light-controlled gate: A novel capped silica nanoscopic mesoporous hybrid material for photo-driven cargo release applications has been designed and prepared. The capped system, which shows a zero release, contains a photo-cleavable bulky o-methoxybenzylamine derivative. Upon irradiation at 254¿nm, photo-degradation of the o-methoxybenzylamine framework and the subsequent delivery of a fluorescent cargo were observed

INGENIERIA DE LA CONSTRUCCIONChemistryPhotochemistryOrganic ChemistryQUIMICA INORGANICASupramolecular chemistryNanotechnologyGeneral ChemistryCatalysisMesoporous materialsQUIMICA ORGANICAControlled releaseNanoparticlesMolecular devicesChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct